subject
Engineering, 30.05.2020 18:57 markell42

The spherical pressure vessel has an inner diameter of 2 m and a thickness of 10 mm. A strain gauge having a length of 20 mm is attached to it, and it is observed to increase in length by 0.012 mm when the vessel is pressurized. Determine the pressure causing this deformation, and find the maximum in-plane shear stress, and the absolute maximum shear stress at a point on the outer surface of the vessel. The material is steel, for which Est

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 15:10
Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is 1.5 kg/s at 400 kpa and 200 c while the second stream is 2kg/s at 500 kpa and 100 ? . it is stated that the exit state of the mixed single flow of argon gas is 150 c and 300 kpa. assuming there is no work output or input during the mixing process, does this process violate either the first or the second law or both? explain and state all your assumptions.
Answers: 1
question
Engineering, 04.07.2019 18:10
Coiled springs ought to be very strong and stiff. si3n4 is a strong, stiff material. would you select this material for a spring? explain.
Answers: 2
question
Engineering, 04.07.2019 18:10
Slip occurs via two partial dislocations because of (a) the shorter path of the partial dislocation lines; (b) the lower energy state through partial dislocations; (c) the charge balance.
Answers: 1
question
Engineering, 04.07.2019 18:10
Atmospheric air has a temperature (dry bulb) of 80Ā° f and a wet bulb temperature of 60Ā° f when the barometric pressure is 14.696 psia. determine the specific humidity, grains/lb dry air. a. 11.4 c. 55.8 d. 22.5 b. 44.1
Answers: 1
You know the right answer?
The spherical pressure vessel has an inner diameter of 2 m and a thickness of 10 mm. A strain gauge...
Questions
question
Mathematics, 06.12.2019 22:31
question
Mathematics, 06.12.2019 22:31
question
Mathematics, 06.12.2019 22:31
Questions on the website: 13722361