subject
Physics, 27.09.2021 08:20 hoosierkid5633

What is the main topic of this equation? K=\frac{1}{2} mv^{2}

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 22:50
Two horizontal plates with infinite length and width are separated by a distance h in the z direction. the bottom plate is moving at a velocity u. the incompressible fluid trapped between the plates is moving in the positive x-direction with the bottom plate. align gravity with positive z. assume that the flow is fully-developed and laminar. if the systems operates at steady state and the pressure gradient in x-direction can be ignored, do the following: 1. sketch your system 2. identify the coordinate system to be used. 3. show your coordinates and origin point on the sketch. list all your assumptions. 5. apply the continuity equation to your system. nts of navier stokes equations of choice to your system 7. solve the resulting differential equation to obtain the velocity profile within the system make sure to list your boundary conditions. check units of velocity 8. describe the velocity profile you obtain using engineering terminology. sketch that on the same sketch you provided in (1). 9. obtain the equation that describes the volumetric flow rate in the system. check the units.
Answers: 2
question
Physics, 22.06.2019 00:30
Asap time is ! best answer gets compose at least one well-developed paragraph on the following: define the term concurrent powers, and give an example of a concurrent power of government.
Answers: 1
question
Physics, 22.06.2019 16:20
What is the single most important equation in all of physics?
Answers: 1
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
What is the main topic of this equation?...
Questions
question
English, 05.02.2021 21:20
question
Biology, 05.02.2021 21:20
question
Mathematics, 05.02.2021 21:20
question
Biology, 05.02.2021 21:20
question
History, 05.02.2021 21:20
question
Mathematics, 05.02.2021 21:20
Questions on the website: 13722367