subject
Physics, 19.05.2021 01:00 butty68

100 POINTS! BRAINLIST! PL I NEED HELPPP Now that you know how forces affect the motions of objects, you can use the Tracker video analysis tool to create dynamic models for a wide range of physical situations.
Tracker enables you to create two different types of mathematical models: analytical and dynamic. An analytical model enables you to enter mathematical expressions for x and y positions as a function of time. That’s sometimes useful, but from a physics perspective, a dynamic model is much more flexible and powerful.
A dynamic model enables you to set the initial conditions for a particular system (initial positions and velocities); then you can mathematically define any forces acting on that system. Once those are set up, the model acts like an object in space, responding to the forces you’ve imposed on it. It can continue moving forever, if that’s what the forces would do to an object in real life. By visually matching a marker for your model to the real motion on the video, you can define and refine a mathematical model for a wide range of real-world situations.

In the first two tasks of this Unit Activity, you’ll create dynamic models for motions in both one and two dimensions.

Activity Research – Creating a Dynamic Particle Model
Before you begin, do a little research and find out where you can get help in creating your models. In Tracker, you can always access illustrated help to do anything. In Tracker, you can always access the illustrated Help dialog (? In the Toolbar).

For this project, you’re going to need to check out the Tracker Help instructions for Dynamic Models. You can print this Help document, but it is available from Tracker anytime you need to refer to it.
For this project, you’re going to need to check out the Tracker Help instructions for creating a dynamic model.

Instructions – Building your Dynamic Model
Start your activity by opening this Tracker experiment: Ice Slide 2 model man.

Click play to watch the video. The other video controls allow you to rewind the video or step forward or backward one frame at a time.

In this activity, you’ll define a dynamic model for the motion of an adult sliding on ice. In the Ice_Slide2_model, a blank model setup is already in place for you. The file also has the man’s motion tracked with point mass Ice Slide 2.

For this one-dimensional motion, the vertical force of gravity and the normal force balance out. Although there is some air drag, the only significant force on the sliding man is kinetic friction. Review, if necessary, the force relationship for kinetic friction.

A dynamic model is already started for you in this file. Follow the two steps in the screen captures below to open the model setup and begin your modeling work.

parameters – Enter the man’s mass (displayed on the first frame of the video)
initial values – Enter those that apply to this x-direction motion: t, x, and vx.
force functions – Enter a function formula for kinetic frictional force in the x direction. (Hint: Use 9.81 for the acceleration of gravity in your formula.)

Part A
Once you’re satisfied with your model, record your model values in the table below.

Font Sizes

Part B
Describe how well you think your modeled position matches the observed position for the man.

Font Sizes

Part C
Next, you’ll compare your model for the man with your model for a boy sliding on the same sled along the same path. Keep the first Tracker experiment open, but also open this Tracker experiment: Ice Slide 1 model.

From this file, select the point mass model boy and repeat the procedure you used to create the dynamic model for the man. Once again, use the initial values for time t = 0.20 seconds.

Try different values of the coefficient of friction and come up with a model that matches the motion of the child. Once again, modify the value of mk to get as close as you can to matching the boy’s observed position for the entire slide.

Once you’re satisfied with your model for the boy, record your model values in the table below.

Font Sizes

Part D
Describe how well you think your modeled position matches the observed position for the boy.

Font Sizes

Part E
Look at your recorded results and models for both the man and the boy. How close are the coefficients of friction for the sled on ice for the two runs? How confident would you feel about specifying a coefficient of kinetic friction for this sled on this ice surface, based on these results? Support your conclusion. What other variables might impact this coefficient result?

Font Sizes

Part F
Finally, observe the values of horizontal acceleration for the point masses and the dynamic models for the man and the boy. What can you say about the acceleration?

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 01:00
What is the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure? (2 points) as air pressure in an area increases, the density of the gas particles in that area decreases. as air pressure in an area increases, the density of the gas particles in that area increases. as air pressure in an area increases, the density of the gas particles in that area remains constant. as air pressure in an area increases, the density of the gas particles in that area increases and decreases in an alternating pattern. 3. which of the following correctly describes a way in which earth's atmosphere interacts with the geosphere? (2 points) it contains gases that living organisms breathe. it contains gases that trap incoming solar radiation. it provides a medium for cycles that provide nutrients to living organisms. it provides a medium for water to move between earth's surface and the air. 4. which of the following is considered a drawback to using wind energy as a source of power? (2 points) wind energy is nonrenewable. wind energy produces large amounts of air pollution. wind turbines can kill birds that fly through the rotors. wind turbines are built too close to major population centers. 5. a meteorologist predicts that the weather in a region will soon change from clear skies to probable thunderstorms. prior to making this prediction, what did the meteorologist most likely observe on a barometer? (2 points) the barometer fell slightly. the barometer fell substantially. the barometer rose slightly. the barometer rose substantially. 6. which of the following do meteorologists not typically use weather balloons to record? (2 points) atmospheric pressure cloud types humidity temperature 7. during which step in the can crush lab did water vapor force air from the can? (2 points) the can was filled nearly to the top with water. the can was placed on the hot stove top burner for several minutes. the can was removed from the hot stove top burner. the can was placed upside-down in the water-filled pan.
Answers: 3
question
Physics, 22.06.2019 01:00
Red’s momentum vector before the collision is green’s momentum vector after the collision. question 1 options: shorter than longer than equal to question 2 (1 point) saved since green bounces off red, this must be an collision. question 2 options: explosion inelastic elastic question 3 (1 point) saved red transfers of its momentum to green during the collision. question 3 options: little all most none question 4 (4 points) why does red transfer all its momentum to green? back up your answer with information from the simulation. write at least 2 sentences. question 4 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 5 (1 point) now make red much heavier than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). red during the collision because it transferred some momentum to green. question 5 options: sped up kept the same velocity slowed down question 6 (1 point) green sped up during the collision as it question 6 options: lost momentum to red maintained a constant momentum. gained momentum from red question 7 (1 point) after the collision . . question 7 options: red bounced off green and went to the left. green moved to the right. both green and red stopped as they have lost all momentum. red stopped and green moved to the right. both green and red moved to the right. question 8 (4 points) only some of red’s momentum was transferred to green. why did this occur? back up your answer with information from the simulation. write at least 2 sentences. question 8 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 9 (1 point) now make red much lighter than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). which is true about the collision? question 9 options: green slowed down after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have gained momentum. green slowed down after the collision therefore it must have gained momentum. question 10 (1 point) since green gained momentum, red had to have momentum because you cannot create or destroy momentum. question 10 options: lost kept the same amount of gained question 11 (1 point) since green was so much and harder to move, it caused red to bounce back to the left giving red . question 11 options: lighter. . . . negative heavier . . . . negative lighter. . . . positive heavier . . . . positive question 12 (4 points) now, click on more data at the bottom of the sim. play with different numbers for the masses and starting velocities. you can even make the starting velocities negative! tell me one thing you discovered by adjusting the speeds and masses. write at least 2 sentences. be specific and use words like velocity, momentum, mass, increased, decreased, etc. question 12 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. part 2: inelastic collisions question 13 (1 point) click on the "less data" box at the bottom of the sim. in the green box, slide the elasticity meter all the way to inelastic so there is 0% elasticity: make the masses whatever size suits you. make sure that green starts out with a velocity of 0 m/s – if you didn’t change this in the last step, you don’t need to do anything. push play and observe! true or false: when red and green collide, they stick together. question 13 options: true false question 14 (1 point) the velocity of red & green after the collision is the velocity that red started off with. question 14 options: larger than smaller than equal to
Answers: 1
question
Physics, 22.06.2019 06:00
Aball is thrown upward. at a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the potential energy equal to zero at ground level) and is moving upward with a kinetic energy of 50 joules. what is the maximum height h reached by the ball? consider air friction to be negligible. 1. h ≈ 10 m 2. h ≈ 50 m 3. h ≈ 30 m 4. h ≈ 40 m 5. h ≈ 20 m 003 10.0 points which of the two object shown below has the greatest kinetic energy? a m b 1 2 m v 2v 1. kinetic energies are the same. 2. a 3. b 4. unable to determine. 004 10.0 points tim, with mass 74.6 kg, climbs a gymnasium rope a distance of 3.1 m. the acceleration of gravity is 9.8 m/s 2 . how much potential energy does tim gain? answer in units of j. 005 10.0 points a car is moving at 64 miles per hour. the kinetic energy of that car is 5 × 105 j. how much energy does the same car have when it moves at 111 miles per hour? answer in units of j. 006 10.0 points an 102 kg man climbs up a 1 m high flight of stairs. the acceleration of gravity is 9.81 m/s 2 . w
Answers: 3
question
Physics, 22.06.2019 09:30
This is important. 1. which of the following is an si base unit for measuring length? (2 points) inch gram meter mole 2. which of the following units for distance is an si unit? (2 points) centimeter foot inch yard 3. which of the following tools should a scientist use to measure an object in meters? (2 points) electronic balance pan balance tape measure thermometer
Answers: 2
You know the right answer?
100 POINTS! BRAINLIST! PL I NEED HELPPP Now that you know how forces affect the motions of objects,...
Questions
question
Social Studies, 31.01.2020 20:49
question
Mathematics, 31.01.2020 20:50
Questions on the website: 13722360