subject
Physics, 28.01.2020 15:45 Babygirll41

Ted is a high school student. he is very good at math, but he is not a very good english student. he likes all of his teachers; he thinks they are fair and want him to learn. on tuesday, ted was sitting in his english classroom, listening to his teacher’s lecture. the teacher asked the class a question. he called on ted. ted had not been paying attention. his palms began to sweat, and his heart rate increased. he felt embarrassed that he did not know the answer. on wednesday, ted was asked to answer another question in his math classroom. even though this time he was listening and knew the answer, his palms began to sweat and his heart rate increased. why did ted’s palms sweat and heart rate increase on wednesday? a. ted associated his embarrassment with being in high school. b. ted associated his math teacher with feelings of embarrassment. c. ted was not completely sure that his answer was correct. d. ted associated being asked a question with embarrassment.

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 22:00
Bernie drove home from a vacation in 1.5 hours. he traveled a total distance of 60 miles. what was his average speed in miles per hour? a. 60 mph b. 90 mph c. 40 mph d. 55mph
Answers: 1
question
Physics, 21.06.2019 22:30
Fft review: linspace, fs, fftshift, nfft 1. generate one second of a cosine of w,-10hz sampled at f, = 100hz and assign it to x. define a tt as your time axis 2. take 64 points fft. 3. as you remember, the dft (which the fft implements) computes n samples of s2t where k-0,1,2, n -1. plot the magnitude of this 64-points fft at range 0 to 63, what do you think of this graph? 4â·to get the x-axis into a hz-frequency form, plot this 64-points fft between-50 to 50 (the 100hz sampling rate) and have n-points between them. 5. according to your figure, what frequency is this cosine wave at? 6. remember that the fft is evaluating from 0 to 2ď€. we are used to viewing graphs from-ď€ to ď€. therefore, you need to shift your graph. 7. now according to your shifted graph. what frequency is this at? 8. note that the spikes have long drop-offs? try a 1024-point dft. note that the peak is closer to 10 and the drop-off is quicker. although, now sidelobes are an issue
Answers: 2
question
Physics, 22.06.2019 03:00
An internally reversible refrigerator has a modified coefficient of performance accounting for realistic heat transfer processes of where qin is the refrigerator cooling rate, qout is the heat rejection rate, and is the power input. show that copm can be expressed in terms of the reservoir temperatures tc and th, the cold and hot thermal resistances rt,c and rt,h, and qin, as where rtot rt,c rt,h. also, show that the power input may be expressed as 1.39 a household refrigerator operates with cold- and hot-temperature reservoirs of tc 5 c and th 25 c, respectively. when new, the cold and hot side resistances are rc,n 0.05 k/w and rh,n 0.04 k/w, respectively. over time, dust accumulates on the refrigerator’s condenser coil, which is located behind the refrigerator, increasing the hot side resistance to rh,d 0.1 k/w. it is desired to have a refrigerator cooling rate of qin 750 w. using the results of problem 1.38, determine the modified coefficient of performance and the required power input w under (a) clean and (b) dusty coil conditions. internally reversible refrigerator qout qin w high-temperature reservoir low-temperature reservoir th th,i tc,i tc high-temperature side resistance low-temperature side resistance w qin th tc qinrtot tc qinrtot copm tc qinrtot th tc
Answers: 2
question
Physics, 22.06.2019 08:30
Red’s momentum vector before the collision is green’s momentum vector after the collision. question 1 options: equal to shorter than longer than question 2 (1 point) saved since green bounces off red, this must be an collision. question 2 options: explosion elastic inelastic question 3 (1 point) red transfers of its momentum to green during the collision. question 3 options: none all little most question 4 (4 points) why does red transfer all its momentum to green? back up your answer with information from the simulation. write at least 2 sentences. question 4 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 5 (1 point) now make red much heavier than green. answer the questions below to describe how both red and green behave after the collision. question 5 options: slowed down sped up kept the same velocity question 6 (1 point) green sped up during the collision as it question 6 options: gained momentum from red lost momentum to red maintained a constant momentum. question 7 (1 point) after the collision . . question 7 options: both green and red moved to the right. both green and red stopped as they have lost all momentum. red stopped and green moved to the right. red bounced off green and went to the left. green moved to the right. question 8 (4 points) only some of red’s momentum was transferred to green. why did this occur? back up your answer with information from the simulation. write at least 2 sentences. question 8 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 9 (1 point) now make red much lighter than green. answer the questions below to describe how both red and green behave after the collision question 9 options: green sped up after the collision therefore it must have gained momentum. green sped up after the collision therefore it must have lost momentum. green slowed down after the collision therefore it must have gained momentum. green slowed down after the collision therefore it must have lost momentum. question 10 (1 point) since green gained momentum, red had to have momentum because you cannot create or destroy momentum. question 10 options: gained lost kept the same amount of question 11 (1 point) since green was so much and harder to move, it caused red to bounce back to the left giving red . question 11 options: heavier . . . . positive lighter. . . . negative lighter. . . . positive heavier . . . . negative question 12 (4 points) now, click on more data at the bottom of the sim. play with different numbers for the masses and starting velocities. you can even make the starting velocities negative! tell me one thing you discovered by adjusting the speeds and masses. write at least 2 sentences. be specific and use words like velocity, momentum, mass, increased, decreased, etc. 13. true or false: when red and green collide, they stick together. question 13 options: true false question 14 (1 point) the velocity of red & green after the collision is the velocity that red started off with. question 14 options: larger than smaller than equal to question 15 (1 point) the velocity after the collision was less because the mass has question 15 options: stayed the same decreased increased question 16 (1 point) the momentum before the collision was the momentum after the collision. question 16 options: larger than smaller than equal to conclusions question 17 (4 points) how are elastic and inelastic collisions different? give two or more ways. your answer should have at least 2 sentences. question 18 (4 points) give an example of a collision in real life. use the law of conservation of energy to describe the transfer of momentum. be sure and discuss the momentum before and after the collision occurs. you will need at least 3 sentences to thoroughly answer this question.
Answers: 2
You know the right answer?
Ted is a high school student. he is very good at math, but he is not a very good english student. he...
Questions
question
Chemistry, 25.06.2019 15:30
Questions on the website: 13722361