subject
Physics, 15.02.2021 20:10 melvina13bday

Using a simply pulley/rope system, a crewman on an Arctic expedition is trying to lower a 6.17-kg crate to the bottom of a steep ravine of height 23.8 meters. The 55.6-kg crewman is walking along holding the rope, being careful to lower the crate at a constant speed of 1.50 m/s. Unfortunately, when the crate reaches a point 13.2 meters above the ground, the crewman steps on a slick patch of ice and slips. The crate immediately accelerates toward the ground, dragging the hapless crewman across the ice and toward the edge of the cliff. If we assume the ice is perfectly slick (that is, no friction between the crewman and the ice once he slips and falls down), at what speed will the crate hit the ground? Assume also that the rope is long enough to allow the crate to hit the ground before the crewman slides over the side of the cliff. At what speed will the crewman hit the bottom of the ravine?

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 16:00
The rigid beam is supported by the three suspender bars. bars ab and ef are made of aluminum and bar cd is made of steel. if each bar has a cross-sectional area of 450 mm2, determine the maximum value of p if the allowable stress is (σallow)st = 200 mpa for the steel and ( σallow)al = 150 mpa for the aluminum. est = 200 gpa and eal = 70 gpa.
Answers: 2
question
Physics, 22.06.2019 08:00
What is the average speed of a car that travels 40 mph for 1 hour and 60 mph in another hour?
Answers: 1
question
Physics, 22.06.2019 10:50
If jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, is being done.
Answers: 3
question
Physics, 22.06.2019 19:30
Visualize the problem and identify special cases first examine the problem by drawing a picture and visualizing the motion. apply newton's 2nd law, ∑f⃗ =ma⃗ , to each body in your mind. don't worry about which quantities are given. think about the forces on each body: how are these consistent with the direction of the acceleration for that body? can you think of any special cases that you can solve quickly now and use to test your understanding later? one special case in this problem is if m2=0, in which case block 1 would simply fall freely under the acceleration of gravity: a⃗ 1=−gj^.
Answers: 1
You know the right answer?
Using a simply pulley/rope system, a crewman on an Arctic expedition is trying to lower a 6.17-kg cr...
Questions
Questions on the website: 13722360