subject
Physics, 10.12.2020 06:50 marciekinser

A force of 6.0 N gives a 2.0 kg block an acceleration of 3.0 m/s² to the right.
The force of friction acting on the block is
N.

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 19:00
Many machines- including inclined planes such as ramps- increase the strength of the force put into the machine but decrease the distance over which the force is applied. true or false
Answers: 1
question
Physics, 22.06.2019 01:40
In all trials, the magnitude of the final velocity for g1 + g2 was less than the magnitude of any initial velocity. as mass increased, what happened to the velocity? the velocity decreased. the velocity increased. the velocity of g1 + g2 could not be measured. the velocity was not affected by the mass increase.
Answers: 1
question
Physics, 22.06.2019 05:20
Very large accelerations can injure the body, especially if they last for a considerable length of time. one model used to gauge the likelihood of injury is the severity index ( ), defined as =/ . in the expression, is the duration of the accleration, but is not equal to the acceleration. rather, is a dimensionless constant that = the number of multiples of that the acceleration is equal to.in one set of studies of rear-end collisions, a person's velocity increases by 13.7 km/h with an acceleration of 36.0 m/s2 . let the + direction point in the direction the car is traveling. what is the severity index for the collision?
Answers: 1
question
Physics, 22.06.2019 08:40
An isolated conducting spherical shell carries a positive charge. part a which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? electric potential inside the shell is constant and outside the shell is changing as 1/r2 both the electric potential and the electric field does change with r inside and outside the spherical shell electric potential inside and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is equal to zero electric field inside and outside the shell is constant (does not change with the position r), but is not equal to zero electric field inside and outside the shell is changing as 1/r (where r is the distance from the center of the sphere) electric field inside is equal to zero and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is changing as 1/r electric field inside and outside the shell is changing as 1/r2 electric field inside is equal to zero and outside the shell is changing as 1/r2 electric field inside and outside the shell is zero electric field inside is constant and outside the shell is changing as 1/r
Answers: 3
You know the right answer?
A force of 6.0 N gives a 2.0 kg block an acceleration of 3.0 m/s² to the right.
The force of...
Questions
question
Mathematics, 28.07.2019 07:30
question
Mathematics, 28.07.2019 07:30
Questions on the website: 13722367