subject
Physics, 18.10.2020 15:01 mdlnlcs

A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m. Determine the acceleration of the car.


A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m.

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 23:00
If an inclined plane is 5 m long and 2 m high, what is its mechanical advantage? a. 2.5 b. 3 c. 7 d. 10
Answers: 1
question
Physics, 22.06.2019 00:30
During spring semester at mit, residents of the parallel buildings of the east campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. a balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. assume that the stretching of the hose obeys hooke's law with a spring constant of 89.0 n/m. if the hose is stretched by 5.80 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length? unitst 3 number-1497 the tolerance is +/-5% open show work click if you would like to show work for this question:
Answers: 2
question
Physics, 22.06.2019 06:40
Alinearly polarized electromagnetic wave has an average intensity of 196 w/m^2. this wave is directed towards two ideal polarizers (in real polarizers, transmission is also effected by reflection and absorption). polarizer a is oriented with its transmission axis at an angle of θ_1=20.8∘ with the incident electric field. polarizer b has its axis at an angle of θ_2=63.0∘ with the incident electric field. what is the average intensity of the wave after it passes through polarizer a? what is the average intensity of the wave after it passes through polarizer b? suppose that the two polarizers a and b are interchanged. what would the average intensity be after passing through both polarizers?
Answers: 2
question
Physics, 22.06.2019 08:40
An isolated conducting spherical shell carries a positive charge. part a which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? electric potential inside the shell is constant and outside the shell is changing as 1/r2 both the electric potential and the electric field does change with r inside and outside the spherical shell electric potential inside and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is equal to zero electric field inside and outside the shell is constant (does not change with the position r), but is not equal to zero electric field inside and outside the shell is changing as 1/r (where r is the distance from the center of the sphere) electric field inside is equal to zero and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is changing as 1/r electric field inside and outside the shell is changing as 1/r2 electric field inside is equal to zero and outside the shell is changing as 1/r2 electric field inside and outside the shell is zero electric field inside is constant and outside the shell is changing as 1/r
Answers: 3
You know the right answer?
A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m....
Questions
question
Mathematics, 18.07.2019 03:40
Questions on the website: 13722363