subject
Physics, 21.05.2020 06:58 shiannethorn

A professor sits at rest on a stool that can rotate without friction. The rotational inertia of the professor-stool system is 4.1 kg · m2 . A student tosses a 1.5-kg mass with a speed of 2.7 m/s to the professor, who catches it at a distance of 0.40 m from the axis of rotation. What is the resulting angular speed of the professor and the stool? (Assume that when the professor catches the mass, their arm is extended along a line radially outward from the axis of rotation, and the velocity of the mass is perpendicular to that line.)

ansver
Answers: 3

Another question on Physics

question
Physics, 22.06.2019 00:30
Aball tossed vertically upward from the ground next to a building passes the bottom of a window 1.8 s after being tossed and passes the top of the window 0.20 s later. the window is 2.0 m high from top to bottom. what was the ball's initial velocity? the unit vector j^ is directed upward. how far is the bottom of the window from the launch position? how high does the ball rise above the launch position?
Answers: 1
question
Physics, 22.06.2019 15:00
Consider a uniformly charged ring in the xy plane, centered at the origin. the ring has radius a and positive charge qdistributed evenly along its circumference. a)what is the direction of the electric field at any point on the z axis? . b)what is the magnitude of the electric field along the positive z axis? use k in your answer, where k=14πϵ0. d)the ball will oscillate along the z axis between z=d and z=−d in simple harmonic motion. what will be the angular frequency ω of these oscillations? use the approximation d≪a to simplify your calculation; that is, assume that d2+a2≈a2. express your answer in terms of given charges, dimensions, and constants
Answers: 2
question
Physics, 22.06.2019 19:00
Review multiple-concept example 7 in this chapter as an aid in solving this problem. in a fast-pitch softball game the pitcher is impressive to watch, as she delivers a pitch by rapidly whirling her arm around so that the ball in her hand moves in a circle. in one instance, the radius of the circle is 0.626 m. at one point on this circle, the ball has an angular acceleration of 66.1 rad/s2 and an angular speed of 12.6 rad/s. (a) find the magnitude of the total acceleration (centripetal plus tangential) of the ball. (b) determine the angle of the total acceleration relative to the radial direction.
Answers: 3
question
Physics, 23.06.2019 02:30
Substances that assume the shape of their container, but do not have a definite size are called
Answers: 2
You know the right answer?
A professor sits at rest on a stool that can rotate without friction. The rotational inertia of the...
Questions
Questions on the website: 13722363