subject
Physics, 14.04.2020 23:05 jeanbeansmith2p2ofty

The amount of thermal energy inside a protostar increases with time, even though the protostar is losing radiative energy from its surface. How can we tell how much radiative energy the protostar is losing and how much thermal energy remains in the star? Which type of energy can we measure and which type do we infer from the law of conservation of energy?

a. We can measure thermal energy directly and radiative thermal energy from models. Protostars do not lose all their gravitational potential energy via radiation, so we can derive the amount left for thermal energy.
b. We can measure radiative energy directly and infer thermal energy from models. Protostars do not lose all their gravitational potential energy to thermal energy, so we can derive the amount left for radiative energy.
c. We can measure radiative energy directly and infer thermal energy from models. Protostars do not lose all their gravitational potential energy via radiation, so we can derive the amount left for thermal energy.
d. We can measure thermal energy directly and infer radiative energy from models. Protostars do not lose all their gravitational potential energy to thermal energy, so we can derive the amount left for radiative energy.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 07:30
Carbon-14 is a radioactive element that undergoes beta decay. which force is responsible for allowing carbon-14 to become stable? electromagnetic gravitational weak nuclear strong nuclear
Answers: 2
question
Physics, 22.06.2019 10:00
What is the temperature in degrees celsius of a substance with a tempature of 49k
Answers: 2
question
Physics, 22.06.2019 10:40
As you are trying to move a heavy box of mass m, you realize that it is too heavy for you to lift by yourself. there is no one around to , so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. you pull up on the rope to lift the box. use g for the magnitude of the acceleration due to gravity and neglect friction forces. once you have pulled hard enough to start the box moving upward, what is the magnitude f of the upward force you must apply to the rope to start raising the box with constant velocity? express the magnitude of the force in terms of m, the mass of the box.
Answers: 1
question
Physics, 22.06.2019 10:50
Asheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 1200oc and is permitted to achieve a steady-state diffusion condition. the diffusion coefficient for nitrogen in steel at this temperature is 6 x 10- 11 m2 /s, and the diffusion flux is found to be 1.2 x 10-7 kg/m2 -s. also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4 kg/m3 . how far into the sheet from this high-pressure side will the concentration be 2.0 kg/m3 ? assume a linear concentration profile.
Answers: 3
You know the right answer?
The amount of thermal energy inside a protostar increases with time, even though the protostar is lo...
Questions
question
Mathematics, 11.06.2021 19:10
question
English, 11.06.2021 19:10
question
History, 11.06.2021 19:10
question
Mathematics, 11.06.2021 19:10
question
Mathematics, 11.06.2021 19:10
Questions on the website: 13722367