subject
Engineering, 20.01.2021 21:20 margaretjloah12

Who needs or want help with getting straight A's

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:20
A3-mm-thick panel of aluminum alloy (k 177 w/m-k, c 875 j/kg-k and ? = 2770 kg/m) is finished on both sides with an epoxy coating that must be cured at or above t,-150°c for at least 5 min. the production line for the curing operation involves two steps: (1) heating in a large oven with air at ts,0-175°c and a convection coefficient of h, 40 w/m2. k, and (2) cooling in a large chamber with air at 25°c and a con- vection coefficient of he 10 w/m2.k. the heating portion of the process is conducted over a time interval te which exceeds the ime required to reach 150°c by 5 min (h = r + 300 s). the coating has an emissivity of ? = 0.8, and the temperatures of the oven and chamber walls are 175 and 25°c, respectively. if the panel is placed in the oven at an initial temperature of 25°c and removed from the chamber at a safe-to-touch tempera ture of 37°c, what is the total elapsed time for the two-step curing operation?
Answers: 3
question
Engineering, 04.07.2019 18:20
For each of the following process: a) sketch the p-v diagram, b)sketch t-s diagram, c) sketch t-v diagram, d) sketch the boundary work on one of the diagrams (a, b or c) and e) sketch the reversible heat transfer on one of the diagrams (a, b or c): 1- isobaric process from compressed liquid to superheated vapor 2- isothermal process from compressed liquid to superheated vapor 3- isentropic process from compressed liquid to superheated vapor
Answers: 3
question
Engineering, 04.07.2019 19:10
The air in an automobile tire with a volume of 0.015 m3 is at 32°c and 140 kpa gage. determine the amount of air that must be added to raise the pressure to the recommended value of 206 kpa gage. assume the atmospheric pressure to be 128 kpa and the temperature and the volume to remain constant.[r-0.287 kj/kgk]
Answers: 3
question
Engineering, 06.07.2019 02:30
Air (c-1.006 kj/kg.k, r-0.287 kj/kg.k) enters a nozzle steadily at 280 kpa and 77°c with a velocity of 50 m/s and exits at 85 kpa and 320 m/s. the heat losses from the nozzle to the surrounding medium at 20°c are estimated to be 3.2 kj/kg. determine (a) the exit temperature and (b) the total entropy change for this process. solve this problem using constant specific heats.
Answers: 1
You know the right answer?
Who needs or want help with getting straight A's...
Questions
question
Mathematics, 26.08.2019 03:10
Questions on the website: 13722367