subject
Engineering, 21.10.2020 17:01 christi05

All this circuit does is take in two inputs, multiply them together, and then add the result to the current state value. For this circuit, let the propagation delay of an adder block be 45ns and the propagation delay of a multiplication block be 60ns. The register has a CLK-to-Q delay of 10ns, setup time of 10ns, and hold time of 5ns. Calculate the maximum clock rate at which this circuit can operate. Assume that both inputs come from clocked registers that receive their data from an outside source.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Atank with constant volume contains 2.27 kg of a mixture of water phases (liquid-vapor). in the initial state the temperature and the quality are 127 °c and 0.6, respectively. the mixture is heated until the temperature of 160 oc is reached. illustrate the process in a t-v diagram. then, determine (1) the mass of the vapor in kg at the initial state, (2) the final pressure in kpa.
Answers: 3
question
Engineering, 04.07.2019 19:10
What are the major differences between injection molding and extrusion?
Answers: 2
question
Engineering, 04.07.2019 19:10
Agas contained within a piston-cylinder assembly e end nation about same energy states, 1 and 2, where pi 10 bar, v undergoes two processes, a and b, between the sam 0.1 m3, ui-400 kj and p2 1 bar, v2 1.0 m2, u2 200 kj: process a: process from 1 to 2 during which the pressure- volume relation is pv constant process b: constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to +20 0 state 2 kinetic and potential energy effects can be ignored. for each of the processes a and b, (a) sketch the process on p-v coordinates, (b) evaluate the work, in kj, and (c) evaluate process the heat transfer, in kj
Answers: 2
question
Engineering, 04.07.2019 19:20
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3
Answers: 2
You know the right answer?
All this circuit does is take in two inputs, multiply them together, and then add the result to the...
Questions
question
Mathematics, 15.12.2020 03:10
question
History, 15.12.2020 03:10
Questions on the website: 13722362