subject
Engineering, 21.09.2020 04:01 lexas2894

Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radii of the pipe are r1 = 6 cm and r2 = 6.5 cm, respectively. The outer surface of the pipe is wrapped with a thin electric heater that consumes 300 W per m length of the pipe. The exposed surface of the heater is heavily insulated so that all heat generated in the heater is transferred to the pipe. Heat is transferred from the inner surface of the pipe to the water by convection with a heat transfer coefficient of h = 85 W/m2⋅K. Assume that the thermal conductivity is constant and the heat transfer is one-dimensional. Required:
Express the mathematical formulation (the differential equation and the boundary conditions) of the heat conduction in the pipe during steady operation.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
What difference(s) did you notice using a pneumatic circuit over hydraulic circuit.explain why the pneumatic piston stumbles when it hits an obstacle.
Answers: 2
question
Engineering, 04.07.2019 18:10
Steel is coated with a thin layer of ceramic to protect against corrosion. what do you expect to happen to the coating when the temperature of the steel is increased significantly? explain.
Answers: 1
question
Engineering, 04.07.2019 18:10
Abrake has a normal braking torque of 2.8 kip in and heat-dissipating cast-iron surfaces whose mass is 40 lbm. suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min using the normal braking torque; estimate the temperature rise of the heat dissipating surfaces.
Answers: 3
question
Engineering, 04.07.2019 18:10
Carbon dioxide gas expands isotherm a turbine from 1 mpa, 500 k at 200 kpa. assuming the ideal gas model and neglecting the kinetic and potential energies, determine the change in entropy, heat transfer and work for each kilogram of co2.
Answers: 2
You know the right answer?
Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radi...
Questions
question
Mathematics, 07.07.2020 20:01
question
Mathematics, 07.07.2020 20:01
question
Mathematics, 07.07.2020 20:01
question
Mathematics, 07.07.2020 20:01
Questions on the website: 13722363