subject
Engineering, 06.05.2020 03:59 peno211

A 300 ft-long 6-ft-wide parabolic trough concentrator receives normal sun radiation at 905 W/m2. A pipe at the focal line received 450 lbm /hour of water at 200 psia and at 100 oF and exits at 180 psia. Calculate the pipe exit conditions. Assume the concentrator reflective losses of 5 percent.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Compute the pressure drop of 30°c air flowing with a mean velocity of 8 m/s in a circular sheet-metal duct 300 mm in diameter and 15 m long. use a friction factor, f 0.02, and pair = 1.1644 kg/m a. 37.26 pa b. 25.27 pa n c. 29.34 pa d. 30.52 pa
Answers: 1
question
Engineering, 04.07.2019 18:20
Inadequate stores control is not an obstacle to effective work order system. (clo4) a)-true b)-false
Answers: 3
question
Engineering, 04.07.2019 18:20
Steam enters a converging nozzle at 3.0 mpa and 500°c with a at 1.8 mpa. for a nozzle exit area of 32 cm2, determine the exit velocity, mass flow rate, and exit mach number if the nozzle: negligible velocity, and it exits (a) is isentropic (b) has an efficiency of 94 percent
Answers: 2
question
Engineering, 04.07.2019 18:20
Asolid cylinder is concentric with a straight pipe. the cylinder is 0.5 m long and has an outside diameter of 8 cm. the pipe has an inside diameter of 8.5 cm. the annulus between the cylinder ad the pipe contains stationary oil. the oil has a specific gravity of 0.92 and a kinematic viscosity of 5.57 x 10-4 m2/s. most nearly, what is the force needed to move the cylinder along the pipe at a constant velocity of 1 m/s?
Answers: 3
You know the right answer?
A 300 ft-long 6-ft-wide parabolic trough concentrator receives normal sun radiation at 905 W/m2. A p...
Questions
Questions on the website: 13722363