subject
Engineering, 21.04.2020 04:21 carri9789

Consider a combined gas-steam power plant that has a net power output of 280 MW. The pressure ratio of the gas-turbine cycle is 11. Air enters the compressor at 300 K and the turbine at 1100 K. The combustion gases leaving the gas turbine are used to heat the steam at 5 MPa to 350°C in a heat exchanger. The combustion gases leave the heat exchanger at 420 K. An open feedwater heater incorporated with the steam cycle operates at a pressure of 0.8 MPa. The condenser pressure is 10 kPa. Assuming isentropic efficiences of 100 percent for the pump, 82 percent for the compressor, and 86 percent for the gas and steam turbines, determine (
a) the mass flow rate ratio of air to steam,
b. ) the required rate of heat input in the combustion chamber, and (
c. ) the thermal efficiency of the combined cycle.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 12:10
On a average work day more than work place firs are reorted
Answers: 1
question
Engineering, 04.07.2019 16:10
The force on a cutting tool are 2600n vertically downward and 2100 horizontal. determine the resultant force acting on the tool and the angle at which it acts.
Answers: 1
question
Engineering, 04.07.2019 18:10
Fluids at rest possess no flow energy. a)- true b)- false
Answers: 3
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
You know the right answer?
Consider a combined gas-steam power plant that has a net power output of 280 MW. The pressure ratio...
Questions
Questions on the website: 13722360