subject
Engineering, 31.03.2020 00:42 bdjxoanbcisnkz

The heat transfer coefficient for hydrogen flowing over a sphere is to be determined by observing the temperature–time history of a sphere fabricated from pure copper. The sphere, which is 20 mm in diameter, is at 75°C before it is inserted into the gas stream having a temperature of 27°C. A thermocouple on the outer surface of the sphere indicates 55°C 97 s after the sphere is inserted into the hydrogen. Assume and then justify that the sphere behaves as a spacewise isothermal object and calculate the heat transfer coefficient

ansver
Answers: 3

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Explain the difference laminar and turbulent flow. explain it with the shear stress and the velocity profiles.
Answers: 1
question
Engineering, 03.07.2019 14:10
When at a point two solid phase changes to one solid phase on cooling then it is known as a) eutectoid point b) eutectic point c) peritectic point d) peritectoid point
Answers: 3
question
Engineering, 03.07.2019 14:10
Line joining liquid phase with liquid and solid phase mixture is known as: a) liquidus b) solidus c) tie line d) none of the mentioned
Answers: 2
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
You know the right answer?
The heat transfer coefficient for hydrogen flowing over a sphere is to be determined by observing th...
Questions
question
Mathematics, 29.08.2019 11:50
question
Chemistry, 29.08.2019 11:50
Questions on the website: 13722367