subject
Engineering, 17.03.2020 04:43 deezy2x

The radial component of velocity in an incompressible two-dimensional flow is given by Vr =3r−2r2 cosðθÞ. Determine the general expression for the θ component of velocity. If the flow were unsteady, what would be the expression for the θ component?

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Give heat transfer applications for the following, (i) gas turbines (propulsion) ) gas turbines (power generation). (iii) steam turbines. (iv) combined heat and power (chp). (v) automotive engines
Answers: 1
question
Engineering, 04.07.2019 18:10
Carbon dioxide gas expands isotherm a turbine from 1 mpa, 500 k at 200 kpa. assuming the ideal gas model and neglecting the kinetic and potential energies, determine the change in entropy, heat transfer and work for each kilogram of co2.
Answers: 2
question
Engineering, 04.07.2019 19:20
Liquid flows at steady state at a rate of 2 lb/'s through a pump, which operates to raise the elevation of the liquid 100 ft from control volume inlet to exit. the liquid specific enthalpy at the inlet is 40.09 btu/lb and at the exit is 40.94 btub. the pump requires 3 btu/s of power to operate. if kinetic energy effects are negligible and gravitational acceleration is 32.174 tt/s, the heat transfer rate associated with this steady state process is most closely 1)-2,02 btu/s from the liquid to the surroundings 2)-3.98 btu/s from the surroundings to the liquid. 3)-4.96 btu/s from the surroundings to the liquid. 4)-1.04 btu/s from the liquid to the surroundings.
Answers: 2
question
Engineering, 06.07.2019 04:10
Aheat pump with refrigerant-134a as the working fluid is used to keep a space at 25°c by absorbing heat from geothermal water that enters the evaporator at 500c at a rate of 0.065 kg/s and leaves at 40°c. the refrigerant enters the evaporator at 20°c with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. the refrigerant loses 300 w of heat to the surroundings as it flows through the compressor and the refrigerant leaves the compressor at 1.4 mpa at the same entropy as the inlet. determine: (a) the degrees of subcooling of the refrigerant in the condenser, b)-the mass flow rate of the refrigerant . (c) the heating load and the cop of the pump, and d)-the theoretical minimum power input to the compressor for the same heating load.
Answers: 3
You know the right answer?
The radial component of velocity in an incompressible two-dimensional flow is given by Vr =3r−2r2 co...
Questions
Questions on the website: 13722363