subject
Engineering, 03.03.2020 06:07 carlinryan

A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion products at 800°C. Determine the time of exposure necessary for the surface to reach the ignition temperature of 400°C, assuming the convection heat transfer coefficient between the wall and the products to be 20 W/m2 K. At that time, what is the temperature 1 cm below the surface? (Note: use an appropriate equation for the semi-infinite wall case; compare equations 18.20 and 18.21 in the text).

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 14:10
The y form of iron is known as: a) ferrite b) cementite c) perlite d) austenite
Answers: 3
question
Engineering, 04.07.2019 18:10
Slip occurs via two partial dislocations because of (a) the shorter path of the partial dislocation lines; (b) the lower energy state through partial dislocations; (c) the charge balance.
Answers: 1
question
Engineering, 04.07.2019 18:20
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
question
Engineering, 04.07.2019 19:10
Starting wih an energy balance on a rectangular volume element, derive the one- dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and no heat generation.
Answers: 1
You know the right answer?
A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenl...
Questions
question
Mathematics, 06.04.2021 20:40
question
Physics, 06.04.2021 20:40
question
Chemistry, 06.04.2021 20:40
question
Mathematics, 06.04.2021 20:40
question
Arts, 06.04.2021 20:40
Questions on the website: 13722363