subject
Engineering, 11.02.2020 19:40 peytonwilson2003

A cell phone performs very different tasks, including streaming music, streaming video, and reading email. These tasks perform very different computing tasks. Battery life and overheating are two common problems for cell phones, so reducing power and energy consumption are critical. In this problem, we consider what to do when the user is not using the phone to its full computing capacity. For these problems, we will evaluate an unrealistic scenario in which the cell phone has no specialized processing units. Instead, it has a quad-core general purpose processing unit. Each core uses 0.5W at full use. For email-related tasks, the quad-core is 8x as fast as necessary.

1 How much dynamic energy and power are required compared to running at full power? First, suppose that the quad-core operates for 1 / 8 of the time and is idle for the rest of the time. That is, the clock is disabled for 7 / 8 of the time, with no leakage occurring during that time. Compare total dynamic energy as well as dynamic power while the core is running.

2 How much dynamic energy and power are required using frequency and voltage scaling? Assume frequency and voltage are both reduced to 1 / 8 the entire time.

3 Now assume the voltage may not decrease below 50% of the original voltage; otherwise, changes in logic state may occur (this voltage is often referred to as the voltage floor). Power can still be reduced to 1 / 8. What are the dynamic energy and power savings in this case compared to the original design at full power?

4 How much energy would be used with a dark silicon approach (compared to the original quad-core design at power full)? This involves creating specialized ASIC hardware for each major task and power gating those elements (to zero power) when not in use. Only one general-purpose core (instead of 4) would be provided, and the rest of the chip would be filled with specialized units. For email, the one core would operate for 25% of the time and be turned completely off with power gating for the other 75% of the time. During the other 75% of the time, a specialized ASIC unit that requires 20% of the energy of a core would be running.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Explain the difference laminar and turbulent flow. explain it with the shear stress and the velocity profiles.
Answers: 1
question
Engineering, 03.07.2019 15:10
Ahouse has the following electrical appliance usage (1) single 40w lamp used for 4 hours per day (2) single 60w fan used for 12 hours per day (3) single 200w refrigerator that runs 24 hours per day with compressor run 12 hours and off 12 hours find the solar power inverter size in watt with correction factor of 1.25.
Answers: 1
question
Engineering, 04.07.2019 18:10
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
question
Engineering, 04.07.2019 18:10
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
You know the right answer?
A cell phone performs very different tasks, including streaming music, streaming video, and reading...
Questions
question
Biology, 28.06.2019 10:00
question
History, 28.06.2019 10:00
Questions on the website: 13722363