subject
Engineering, 14.09.2019 05:30 rsanchez1226

Afire nozzle is supplied through 300 ft of 1.5 in. diameter, smooth, rubber-lined hose. water from a hydrant is supplied to a booster pump on board the pumper truck at 50 psig. at design conditions, the pressure at the nozzle inlet is 100 psig, and the pressure drop along the hose is 33 psi per 100 ft of length. determine (a) the design flow rate, (b) the nozzle exit velocity, assuming no losses in the nozzle, and (c) the power required to drive the booster pump, if its efficiency is 70 percent

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
question
Engineering, 04.07.2019 03:10
What precautions should you take to prevent injuries when dealing with heavy loads?
Answers: 1
question
Engineering, 04.07.2019 18:10
At 12 noon, the count in a bacteria culture was 400; at 4: 00 pm the count was 1200 let p(t) denote the bacteria cou population growth law. find: (a) an expression for the bacteria count at any time t (b) the bacteria count at 10 am. (c) the time required for the bacteria count to reach 1800.
Answers: 1
question
Engineering, 04.07.2019 18:20
Derive the correction factor formula for conical nozzle i=-(1+ cosa) and calculate the nozzle angle correction factor for a nozzle whose divergence hal-fangle is 13 (hint: assume that all the mass flow originates at the apex of the cone.
Answers: 3
You know the right answer?
Afire nozzle is supplied through 300 ft of 1.5 in. diameter, smooth, rubber-lined hose. water from a...
Questions
Questions on the website: 13722367