subject
Engineering, 29.08.2019 05:10 Nadi4753

A150-mm pipe is connected to the side of a water tank at a depth of 8 m. a 50-mm diameter nozzle is connected to the end of pipe. for steady water surface in the tank and no losses in the system, determine the velocity of jet and the pressure inside the pipe

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
An air compression refrigeration system is to have an air pressure of 100 psia in the brine tank and an allowable air temperature increase of 60°f for standard vapor compression cycle temperatures of 77 f entering the expansion cylinder and 14 f entering the compression cylinder, calculate the coefficient of performance a. 2.5 b 3.3 c. 4.0 d. 5.0
Answers: 3
question
Engineering, 04.07.2019 18:20
Air is compressed isentropically from an initial state of 300 k and 101 kpa to a final temperature of 1000 k. determine the final pressure using the following approaches: (a) approximate analysis (using properties at the average temperature) (b) exact analysis
Answers: 1
question
Engineering, 04.07.2019 19:20
Apiping systems consists of 6 m of 6-std type k and 12 m of 4-std type k, both drawn copper tubing. the system conveys ethylene glycol at a rate of 0.013 m3/s. the pressure drop across the system is to be calculated. there are two 90° elbows in the 6-in pipe, a reduction from the 6-in pipe to the 4-in pipe and four 90° elbows in the 4-in pipe. all fittings are soldered (same as flanged) and regular. the inlet and outlet of the system are at the same height.
Answers: 1
question
Engineering, 04.07.2019 19:20
Determine (a) the maximum thermal efficiency of reversible power cycles operating between a hot reservoir at 1000°c and a cold reservoir at 200°c and (b) the maximum cops for reversible refrigeration and heat pump cycies, respectively, between 28°c and 14°c.
Answers: 1
You know the right answer?
A150-mm pipe is connected to the side of a water tank at a depth of 8 m. a 50-mm diameter nozzle is...
Questions
question
Social Studies, 27.07.2019 19:00
Questions on the website: 13722367